The Influence of the Quasi-Biennial Oscillation on the Troposphere in Wintertime in a Hierarchy of Models, Part 2-Perpetual Winter WACCM runs
نویسندگان
چکیده
Experiments with the Whole Atmosphere Community Climate Model (WACCM) are used to understand the influence of the stratospheric tropical Quasi-Biennial Oscillation(QBO) in the troposphere. The zonally symmetric circulation in thermal wind balance with the QBO affects high frequency eddies throughout the extratropical troposphere. The influence of the QBO is strongest and most robust in the North Pacific near the jet exit region, in agreement with observations. Variability of the stratospheric polar vortex does not appear to explain the effect that the QBO has in the troposphere in the model, though it does contribute to the response in the North Atlantic. Anomalies in tropical deep convection associated with the QBO appear to damp, rather than drive, the effect of the QBO in the extratropical troposphere. The thermal wind response to QBO momentum anomalies interacting with tropospheric transient waves appears to be the crucial mechanism through which the QBO produces significant anomalies in the extratropical troposphere. The response to QBO winds of realistic amplitude is stronger for perpetual February radiative conditions and sea surface temperatures than perpetual January conditions, consistent with the observed response in reanalysis data, in a coupled seasonal WACCM integration, and in dry model experiments described in part 1.
منابع مشابه
The Influence of the Quasi-Biennial Oscillation on the Troposphere in Winter in a Hierarchy of Models. Part I: Simplified Dry GCMs
A dry primitive equation model is used to explain how the quasi-biennial oscillation (QBO) of the tropical stratosphere can influence the troposphere, even in the absence of tropical convection anomalies and a variable stratospheric polar vortex. QBO momentum anomalies induce a meridional circulation to maintain thermal wind balance. This circulation includes zonal wind anomalies that extend fr...
متن کاملTropospheric Precursors of Anomalous Northern Hemisphere Stratospheric Polar Vortices
Regional extratropical tropospheric variability affects the wave driving of the Northern Hemisphere wintertime stratospheric polar vortex. Simple reasoning is used to understand the nature of the regional variability that reinforces extratropical planetary waves, and thus zonal wavenumber-1 and wavenumber-2 vertical EP flux leaving the troposphere. In the reanalysis record and in WACCM (Whole A...
متن کاملSolar influence on a major mode of atmospheric variability
[1] We find that the North Annular Mode (NAM) of the wintertime geopotential height anomalies between 10 and 1000 hPa is influenced by solar changes and that the effect is statistically significant. This evidence suggests that a mechanism of solar influence on climate operates through the excitation of this mode. The influence depends on the phase of the quasi-biennial oscillation (QBO). In ear...
متن کاملتبیین علل کاهش یافتن مقدار و شدت بارشهای زمستانه در قیاس با بارشهای پاییزه در سواحل جنوبی دریای خزر
The causes of wintertime precipitation decrease in the Southern Coast of Caspian Sea (SCCS) compared to its counterpart in autumn, is investigated with the use of synoptic stations daily dataset of SCCS and gridded NCEP/NCAR and NOAA dataset. The structure of atmospheric circulation and synoptic and physical conditions over the Caspian Sea region which are dominate in the winter and autumn prec...
متن کاملModulation of northern hemisphere wintertime stationary planetary wave activity: East Asian climate relationships by the Quasi-Biennial Oscillation
[1] The modulation of the relationship between the tropospheric stationary planetary wave activity and the East Asian winter climate by the tropical quasi-biennial oscillation (QBO) wind in the stratosphere is investigated. In the QBO easterly phase, a significant warming appears in northeastern Asia in the presence of high wave activities. This corresponds to a weakened East Asian trough at 50...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010